Sound in medicine. CH.12. Dr.Rajaa أ.م.د. رجاء سهيل جنم جامعة تكريت كلية طب االسنان. General Properties of Sound

Size: px
Start display at page:

Download "Sound in medicine. CH.12. Dr.Rajaa أ.م.د. رجاء سهيل جنم جامعة تكريت كلية طب االسنان. General Properties of Sound"

Transcription

1 CH.12. Dr.Rajaa Sound in medicine أ.م.د. رجاء سهيل جنم جامعة تكريت كلية Sound : It is the audible waves of frequency between 20 Hz and 20 khz. Infrasound : refers to the sound of frequency below the normal hearing range (<20 Hz) and subsonic (0 to 20Hz),which cannot be heard. Ultrasound : It ranges above 20 khz,which is also cannot be heard. General Properties of Sound. Sound waves require a medium for their transmission.. Matter must be present for sound to travel. 1. A sound wave is a mechanical disturbance in a gas,liquid or solid cause local pressure increase (i.e. compression )and pressure decrease (rarefaction). Figure (12.1) Asound wave vibrate at frequency f and produces compression and rarefaction. 2. Sound wave spread outward as a longitudinal wave i.e. the pressure changes occure in the same direction that the wave travels. 3. Velocity of the sound is given by : V = f f= frequency of vibration of the sound wave. =wave length of the sound wave. * The velocity of the sound differs from the medium to medium because of the freedom of motion of the molecules in the medium, that is their stuffiness elasticity, or compressibility * The higher the density, the higher is the velocity of the sound. Table (12-1). shows the velocity of ultrasound in several substances of medical importance. 1

2 Table Velocity of ultrasound in several materials كلية of medical جامعة تكريت interest Materials Velocity (m/s) Air 348 Aluminum 2700 Beryllium 12,890 Blood 1570 Bone 3360 Fat 1500 Liver 1550 Muscle 1580 Oil 1500 Polyethylene 920 Soft tissue 1540 Water 1480 Note that the velocity of ultrasound in bone is twice that in soft tissue and the velocity in soft tissue is five times that in air. The velocity of ultrasound does not depend on frequency, it is determined by the medium.i.e.. Speed in gas < speed in liquid < speed in solid The two types of ultrasound employed in diagnostic are: 1. continuous wave 2. pulsed wave. Figure (12-2). shows the difference between these types of emission. * During continuous-wave emission, the ultrasound generating device, the transducer, vibrates continuously. This type of ultrasound is principally employed in examinations of the fetal heart and of blood flow by the Doppler method. 2

3 * Pulsed ultrasound is employed in most imaging studies, including A-mode, B-mode, M- mode, and real time. These imaging studies are based on كلية pulse-echo تكريت techniques جامعة in which a pulse of ultrasound is emitted and the reflected ultrasound wave or echo, is received by the same transducer after a time delay. Acoustic Impedance Acoustic impedance (Z) is used to describe the reflection of sound at an interface. It is a function of the density of the medium and its compressibility, which is measured by the velocity of sound in the medium., mathematically, acoustic impedance is described by: Z = ρv Where ρ : is the density of the medium (Kgm/m 3 ) V : is the velocity of the sound in the medium (m/ s).. Acoustic impedance therefore has unit (Kgm/m 2.s) In general, the higher the density, the greater is the acoustic impedance. Also, the higher the velocity of sound in the medium, the greater is the acoustic impedance. Table (12-2). reports the acoustic impedance for several materials of diagnostic importance since the acoustic impedance is determined by the velocity of sound in the medium, it is not dependent on the frequency or wavelength of the ultrasound beam. Table Acoustic impedance for several materials of diagnostic impedance Acoustic impedance Materials kg/m 2 s (10-6 ) Air Aluminum 17 Beryllium 1.61 Blood 7.80 Bone 1.58 Fat 1.38 Kidney 1.62 Liver 1.65 Muscle 1.70 Oil 1.43 Polyethylene 1.88 Soft tissue 1.63 Water 1.48 * Acoustic impedance is a most important tissue characteristic. The largest reflections occur between tissues with great differences in acoustic impedance. 3

4 The other two parameters constituting the wave equation-frequency جامعة تكريت كلية and wavelength are inversely proportional. As ultrasound frequency increases, the wavelength decreases. The ability to resolve small objects is directly related to the wavelength of the radiation involved. * High frequency ultrasound (short-wavelength) results in better resolution than the low frequency. * High-frequency ultrasound results in shallow penetration. For this reason, highfrequency transducers, up to 15 MHz, are employed for ultrasonic examination of small superficial structures such as eyes. * Lower frequency transducers, around 2.5 MHz, are used for abdominal ultrasound examinations. Diagnostic ultrasound is usually identified by its frequency of operation. In that regard, some summary statements are possible. As the frequency of ultrasound increases, the following occurs: 1. The ability to resolve small objects improves. 2. The penetrability of the beam decreases. 3. The beam becomes more collimated and directional. Reflectivity When an ultrasound wave incident on a tissue interface, some of the sound will be reflected and some will be transmitted figure (12-3). The transmitted beam will leave the interface at an angle different from that of the incident beam. The deviation of the beam is called refraction. * In diagnostic ultrasound the transmitted beam is necessary to image deeper tissues. 4

5 * Principal interest lies in the reflected beam or actually its intensity relative to the incident beam.this quantity of intensity ratio is known as the كلية interface تكريت reflectivity جامعة (R) is defined as: The percentage of ultrasound reflected at such an interface is As the angle of incident increases figure (12-4), the reflected beam is directed farther from detecting transducer. As the angle increases still farther, total reflection will occur at the interface, but this reflected beam will note be detected. The angle for total reflection is called the critical angle, and it depends on the velocity of sound in each medium. Scattering Regardless of the angle of incidence, a large fraction of the transmitted ultrasound beam will be reflected if the roughness of the tissue interface is large compared to the wavelength of the ultrasound. Such a situation is normal in diagnostic ultrasound and is termed specular reflection. * if the roughness of the tissue interface is small compared to the wavelength of the transmitted ultrasound, the specular reflection will not occur, in such a case, the ultrasound beam becomes diffuse and intense because of multiple scattering. 5

6 * Highly irregular interfaces and heterogeneous tissues result in scattering, as seen in figure (12-5). Some of the ultrasound is scattered back to كليةthe transducer تكريت and جامعة contributes to image formation. This is call backscattered ultrasound. Absorption Attenuation refers to the reduction in the beam intensity with depth in tissue caused by absorption, scattering, and beam divergence. US attenuation occurs exponentially in much the same manner as that for X-radiation. The equation describing US attenuation is also similar to: I=I o e -2 X (1) where. I o = is the initial intensity. I x = is the intensity at depth X. X = is the depth in tissue. = is the US attenuation coefficient US attenuation coefficient varies with a physical properties of conducting medium and the US frequency. * The higher frequency, the higher is the attenuation coefficient and therefore the greater attenuation. 6

7 For this reason the practical limit to diagnostic US is approximately 15 MHz. جامعة تكريت كلية The half value layer(hvl)=x 1/2 : is the thickness of absorbing tissue will reduce the beam intensity to half it's original value (I o /2), i.e at X= X 1/2 then I= I o /2: substitute this condition in equation (1) : I o /2 = I o e -2αX 1/2... 1/2 = e -2αX 1/2 2-1 = e -2αX 1/2 -ln 2 = -2α X 1/2 ln e since ln e = ln ln 2 = 2α X 1/2 and ln 2 = X 1/2 = / (2α) Note : Pulses of US are transmitted into the body by placing the vibrating crystal in close contact with the skin by using a jelly paste or water to : 1- Eliminate the air. 2- Give good coupling at skin. 3- Greatly increase the transmission of US. into the body and of the echoes to the detector (Transducer) 7

8 Diagnostic Ultrasound Instrumentation and Operation Principal reasons for its wide application are its ease of use, كلية the relatively جامعة تكريت low cost of radiation. the instrumentation, and the lack of ionizing * The heart of diagnostic ultrasound is the transducer. Ultrasound transducer A transducer is any device that converts energy from one form to another. An ultrasound transducer converts electric energy into ultrasound energy and ultrasound energy back into electric energy. * Operation of an ultrasound transducer is based on the piezoelectric effect. The piezoelectric effec : is demonstrated graphically in figure (12-6). when a suitable crystalline material is stimulated electrically, the crystal will expand along its short axis. If the polarity of the electric signal is reversed, the crystal will contract. If the electric signal oscillates at a high frequency, then the crystal will alternately expand and contract at the same frequency. * An ultrasound transducer converts an electric signal into mechanical motion and the mechanical motion into ultrasound. The reverse is also possible. Ultrasound incident on a suitable crystalline material will transfer the energy of compression and rarefaction into contraction and expansion of the crystal.this in turn will cause an oscillating electric signal. This process is also the piezoelectric effect. 8

9 Figure(12--7). Several components comprise the transducer. جامعة تكريت كلية The face of the transducer assembly is a protective acoustic window designed to match the active crystal and transmit the ultrasound beam through االسنان acoustic couplingطب to the patient. A matching layer with acoustic impedance between that of the face and tissue may be attached to improve ultrasound transmission into tissue by reducing surface reflectivity * The active element of the transducer is the piezoelectric crystal. The material most frequently used is lead zirconate titanate (PZT). * To optimize the efficiency of US transmission and reception, the thickness of the crystal must be a half or a quarter wavelength. For 2.3 MHz transducer, crystal thickness is 0.31mm or 0.15mm. At 10 MHz the crystal thickness is only 70µm or 35µm. * The piezoelectric crystal is backed by material designed to damp the movement of the crystal so that, when the electric stimulus is removed, the crystal will cease motion immediately. * The piezoelectric crystal and backing material are surrounded by acoustic insulation to further confine the ultrasound beam. Electric signals are transmitted through a connecter on the back of the trasducer to each of the piezoelectric crystal. The crystal faces are coated with electrically conducting material. 9

10 Operational modes أ.م.د. رجاء سهيل جنم جامعة تكريت كلية B-mode; Two are static imaging modes, A-mode and two are dynamic imaging modes, M-mode and real time; one, Doppler mode, is a ranging mode. All find application in diagnostic ultrasound, and each has its own area for special application. * A-mode is particularly useful for measuring midline shifts of the brain. * B-mode is perhaps the one most widely employed, and it is used primarily for abdominal imaging. * M-mode finds its principal application in dynamic imaging of internal structures. * Real-time ultrasound allows for observation of structures in motion. * Doppler ultrasound is used for depth and flow measurements and investigations of moving surfaces. It finds principal application in fetal heart monitoring and peripheral blood flow measurement. A-Mode Display A-mode (amplitude mode), In this mode, ultrasound is emitted in pulses by the transducer, which then also receives echoes or reflections from tissue interfaces. This type of ultrasound emission is called pulse-echo technique. A-mode ultrasound employs one or tow transdure. * In a two transducer application, one transducer is used to transmit and the other to receive. For observation in the brain, the transmitting transducer is placed on one side of the head and the receiving transducer on the other. * In the one-device mode, the same transducer is used to transmit and device. * The main purpose for employing A-mode is to measure the depth of interfaces and to detect their separation accurately. B-Mode Display B-mode (brightness mode) : has little application in diagnostic ultrasound. B-mode transducer is manipulated, this transducer can be moved linearly over the patient to provide a rectangular field of view, it can be angulated to provide a sector field of view, or a combination of both can be employed M-Modest Display This type of ultrasound display is called M-mode (motion mode). It is also sometimes referred to as TM-mode (time-motion mode), PM-mode (position-motion mode), and UCH (ultrasonic cardiograph), since its principal application is to monitor the heart. 10

11 Doppler Ultrasound كليةmovement Another method of ultrasonically monitoring the of tissue تكريت interface جامعة is based on the Doppler effect. The wavelength of light varied االسنانaccording to the relative طب motion of the source of light and the observer. * If the source or observer or both are moving toward each other, the light received will have a shorter wavelength (higher frequency) than the emitted. On the other hand, if the source and observer are moving apart, the received light will have a lowerfrequency than that emitted. A continuous ultrasound beam is emitted in Doppler applications. When the reflected beam is received by the transducer, the change in frequency caused by the Doppler effect is electronically determined. The mathematics associated with Doppler ultrasound to measure this frequency shift are rather simple. The frequency shift, F D is called the Doppler shift frequency. If F T is the transmitted frequency and F R the frequency of sound reflected from the moving tissue interface, then F D = F T F R If however, one knows the velocity of sound in the medium (V) and the velocity in the interface (u), then the Doppler shift frequency becomes: The transducer used in Doppler US incorporates two crystals, one to transmit and one to receive. Because of this simplicity, the cost of a Doppler ultrasound unit can be much less than that of a compound B-scanner. Real-Time Imaging Real-time ultrasound is dynamic imaging. It is to compound B-mode what fluoroscopy is to radiography. Real-time ultrasound is finding increasing application in many areas of medical imaging. It has several distinct advantages over B-mode imaging: 1. The cost of equipment can be considerably less. 2. The image obtained is not nearly so dependent on operator skill. 3. The time required for real-time examination is generally less because of the ease with which the equipment can be handled. 4. Several commercial versions are available, including mobile system. The real-time transducer assembly is larger than a B-mode transducer. 11

12 The transducer probe is then moved over the surface of جنمthe patient سهيل رجاءin أ.م.د. any direction and angle until the anatomic region of interest is found جامعة تكريت كلية The dynamic (moving) image may then be stored on videotape for subsequent viewing, or stop-action frame photographs may be obtained. Real time ultrasound does have disadvantages. The real-time image results from the ultrasound beam interacting with the tissue interface from only one direction, whereas with B-mode, one can move the transducer while storing the image from many directions for ultimate composition. Consequently, the resolution is better with B-mode than with real time. BIOLOGIC EFECT Mechanisms of Action An expression used by radiologists to describe the manner in which radiation produces a biologic effect is the mechanism of action. * For ionizing radiation, the mechanism of action is ionization and excitation. * For ultrasound, the mechanism of action is temperature elevation, cavitations and various viscous stresses. Thermal effect Ultrasound irradiation can elevate the temperature of tissue through molecular agitation and the relaxation processes. Extremely intense levels are required to produce a measurable temperature elevation in tissue. * The hazard from temperature elevation is, of course, not specific to ultrasound. At the local tissue level, temperature elevation can result in structural changes in macromolecules and membranes and changes in the rates of biochemical reactions. Effects on Living Tissue if the ultrasound intensity is sufficiently high, many of the effects described earlier as resulting from ionizing radiation exposure can be produced. Chemical bonds can be disrupted, macromolecules are degraded, chromosomes aberration can be produced, and cells can be killed. 12

Diagnostic Ultrasound. Sutiporn Khampunnip, M.D.

Diagnostic Ultrasound. Sutiporn Khampunnip, M.D. Diagnostic Ultrasound Sutiporn Khampunnip, M.D. Definition of Ultrasound Ultrasound is simply sound waves, like audible sound. High-frequency sound and refers to mechanical vibrations above 20 khz. Human

More information

Principles of Ultrasound. Cara C. Prideaux, M.D. University of Utah PM&R Sports Medicine Fellow March 14, 2012

Principles of Ultrasound. Cara C. Prideaux, M.D. University of Utah PM&R Sports Medicine Fellow March 14, 2012 Principles of Ultrasound Cara C. Prideaux, M.D. University of Utah PM&R Sports Medicine Fellow March 14, 2012 None Disclosures Outline Introduction Benefits and Limitations of US Ultrasound (US) Physics

More information

Basic Ultrasound Physics Board Review Questions

Basic Ultrasound Physics Board Review Questions Basic Ultrasound Physics Board Review Questions Sidney K. Edelman, PhD ESP Ultrasound The Woodlands, TX Question 1 What is the wavelength of 2 MHz sound in soft tissue? 1. 1.54 mm 2. 0.75 mm 3. 0.75 cm

More information

Supplement (videos)

Supplement (videos) Supplement (videos) Ruben s tube (sound): http://www.youtube.com/watch?v=gpcquuwqayw Doppler US (diagnostic use): http://www.youtube.com/watch?v=fgxzg-j_hfw http://www.youtube.com/watch?v=upsmenyoju8 High

More information

Basic Physics of Ultrasound and Knobology

Basic Physics of Ultrasound and Knobology WELCOME TO UTMB Basic Physics of Ultrasound and Knobology By Daneshvari Solanki, FRCA Laura B. McDaniel Distinguished Professor Anesthesiology and Pain Medicine University of Texas Medical Branch Galveston,

More information

The Physics of Ultrasound. The Physics of Ultrasound. Claus G. Roehrborn. Professor and Chairman. Ultrasound Physics

The Physics of Ultrasound. The Physics of Ultrasound. Claus G. Roehrborn. Professor and Chairman. Ultrasound Physics The Physics of Ultrasound Pipe Organ 10-8000 Emission Dog 452-1080 Man 85-1100 Spectrum Bat 10,000-120,000 Porpoise 7000-120,000 Claus G. Roehrborn Professor and Chairman 10 20 Cycles per second Reception

More information

ULTRASOUND IMAGING EE 472 F2018. Prof. Yasser Mostafa Kadah

ULTRASOUND IMAGING EE 472 F2018. Prof. Yasser Mostafa Kadah ULTRASOUND IMAGING EE 472 F2018 Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook Diagnostic Ultrasound: Physics and Equipment, 2nd ed., by Peter R. Hoskins (Editor), Kevin Martin (Editor),

More information

Preamble (disclaimer)

Preamble (disclaimer) Preamble (disclaimer) PHYSICS AND PRINCIPLES OF HEAD/NECK ULTRASOUND Joseph C. Sniezek, MD FACS LTC, MC, USA Otolaryngology/H&N Surgery Tripler Army Medical Center 1. I am not a physicist 2. ACS has recommended

More information

Lesson 03: Sound Wave Propagation and Reflection. This lesson contains 15 slides plus 14 multiple-choice questions.

Lesson 03: Sound Wave Propagation and Reflection. This lesson contains 15 slides plus 14 multiple-choice questions. Lesson 03: Sound Wave Propagation and Reflection This lesson contains 15 slides plus 14 multiple-choice questions. Accompanying text for the slides in this lesson can be found on pages 8 through 14 in

More information

Ultrasonic Testing Level I:

Ultrasonic Testing Level I: Ultrasonic Testing Level I: 1- Sound Wave - Introduction - ASNT Level I - Sound Wave Propagation - Velocity / Frequency / Wave Length - Acoustic Impedance - Energy / Intensity 2- Ultrasound Wave Modes

More information

Dr Emma Chung. Safety first - Physical principles for excellent imaging

Dr Emma Chung. Safety first - Physical principles for excellent imaging Safety first - Physical principles for excellent imaging Dr Emma Chung Lecturer in Medical Physics, University of Leicester Clinical Scientist, University Hospitals of Leicester NHS Trust Thanks to Caroline

More information

Physical Principles of Ultrasound

Physical Principles of Ultrasound Physical Principles of Ultrasound Grateful appreciation to Richard A. Lopchinsky, MD, FACS and Nancy H. Van Name, RDMS, RTR, and MarleneKattaron, RDMS 2000 UIC All Rights Reserved. Course Objectives Identify

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu Basic principles. Comparison to X-rays Ultrasound > 20kHz

More information

ULTRASOUND. OB/Gyn (Core) Ultrasound PIEZOELECTRIC EFFECT. Principles of Ultrasound Physics and Instrumentation. Nathan Pinkney, BS, CDOS

ULTRASOUND. OB/Gyn (Core) Ultrasound PIEZOELECTRIC EFFECT. Principles of Ultrasound Physics and Instrumentation. Nathan Pinkney, BS, CDOS 1 OB/Gyn (Core) Ultrasound Principles of Ultrasound Physics and Instrumentation Nathan Pinkney, BS, CDOS Philadelphia College of Osteopathic Medicine 2016 ULTRASOUND CATEGORIES OF SOUND INFRASOUND = below

More information

Ultrasound Physics & Terminology

Ultrasound Physics & Terminology Ultrasound Physics & Terminology This module includes the following: Basic physics terms Basic principles of ultrasound Ultrasound terminology and terms Common artifacts seen Doppler principles Terms for

More information

Ultrasound Principles cycle Frequency Wavelength Period Velocity

Ultrasound Principles cycle Frequency Wavelength Period Velocity ! Teresa S. Wu, MD, FACEP Director, EM Ultrasound Program & Fellowship Co-Director, Simulation Based Training Program & Fellowship Associate Program Director, EM Residency Program Maricopa Medical Center

More information

Ultrasound Physics and Knobology Alan Macfarlane. Consultant Anaesthetist Glasgow Royal Infirmary

Ultrasound Physics and Knobology Alan Macfarlane. Consultant Anaesthetist Glasgow Royal Infirmary Ultrasound Physics and Knobology Alan Macfarlane Consultant Anaesthetist Glasgow Royal Infirmary RAPM 2009; 34: 40-46 Ultrasound Proficiency Understanding US image generation and device operation Image

More information

Application of Phased Array Radar Theory to Ultrasonic Linear Array Medical Imaging System

Application of Phased Array Radar Theory to Ultrasonic Linear Array Medical Imaging System Application of Phased Array Radar Theory to Ultrasonic Linear Array Medical Imaging System R. K. Saha, S. Karmakar, S. Saha, M. Roy, S. Sarkar and S.K. Sen Microelectronics Division, Saha Institute of

More information

Terminology Tissue Appearance

Terminology Tissue Appearance By Marc Nielsen, MD Advantages/Disadvantages Generation of Image Ultrasound Machine/Transducer selection Modes of Ultrasound Terminology Tissue Appearance Scanning Technique Real-time Portable No ionizing

More information

Ultrasound. Principles of Medical Imaging. Contents. Prof. Dr. Philippe Cattin. MIAC, University of Basel. Oct 17th, 2016

Ultrasound. Principles of Medical Imaging. Contents. Prof. Dr. Philippe Cattin. MIAC, University of Basel. Oct 17th, 2016 Ultrasound Principles of Medical Imaging Prof. Dr. Philippe Cattin MIAC, University of Basel Contents Abstract 1 Image Generation Echography A-Mode B-Mode M-Mode 2.5D Ultrasound 3D Ultrasound 4D Ultrasound

More information

Ultrasound Physics & Doppler

Ultrasound Physics & Doppler Ultrasound Physics & Doppler Endocrine University 2018 Mark Lupo, MD, FACE, ECNU Objectives Review the essential components of ultrasound physics in neck sonography Demonstrate the importance of ultrasound

More information

The table below shows the density and velocity of waves in two different substances. Density / kg m 3 Velocity / m s 1

The table below shows the density and velocity of waves in two different substances. Density / kg m 3 Velocity / m s 1 Q1.(a) When ultrasound is incident at an interface between two different media some energy is transmitted and some is reflected. The ratio of the reflected energy intensity I r to the incident energy intensity

More information

Basic Physics of Ultrasound in Transesophageal Echocardiography

Basic Physics of Ultrasound in Transesophageal Echocardiography SPECIAL ARTICLE IJUTPC Basic Physics of Ultrasound in Transesophageal Echocardiography Basic Physics of Ultrasound in Transesophageal Echocardiography 1 Mary Korula, 2 Ravi Hebballi 1 Senior Consultant,

More information

1 Fundamentals. Basic Definitions and Physics Principles. Fundamentals

1 Fundamentals. Basic Definitions and Physics Principles. Fundamentals 1 To become versed in the language of ultrasonography, it is necessary to review some of the basic principles of physics. The wave physics principles of ordinary (i.e., audible) sound apply to ultrasound

More information

DIGITAL IMAGE PROCESSING IN ULTRASOUND IMAGES

DIGITAL IMAGE PROCESSING IN ULTRASOUND IMAGES DIGITAL IMAGE PROCESSING IN ULTRASOUND IMAGES Kamaljeet Kaur Computer Science & Engineering Department Guru Nanak Dev Engg. College, Ludhiana. Punjab-India meetk.89@gmail.com ABSTRACT-- Image processing

More information

Point-of-Care Ultrasound: An Introduction

Point-of-Care Ultrasound: An Introduction Point-of-Care Ultrasound: An Introduction Delegation Teaching Package for Registered Respiratory Therapists and Anesthesia Assistants Developed by: Rob Bryan RRT, AA Edited by: Kelly Hassall RRT, FCSRT,

More information

Underwater Acoustic Measurements in Megahertz Frequency Range.

Underwater Acoustic Measurements in Megahertz Frequency Range. Underwater Acoustic Measurements in Megahertz Frequency Range. Current State and Prospects of Development in Russia Alexander M. Enyakov,, Many medical applications of underwater acoustic measurements

More information

Diploma of Medical Ultrasonography (DMU) Physical Principles of Ultrasound and Instrumentation Syllabus

Diploma of Medical Ultrasonography (DMU) Physical Principles of Ultrasound and Instrumentation Syllabus Diploma of Medical Ultrasonography (DMU) Physical Principles of Ultrasound and Instrumentation Syllabus Page 1 of 7 11/18 Candidates are expected to cover all of the content of this syllabus when preparing

More information

Development of Ultrasound Based Techniques for Measuring Skeletal Muscle Motion

Development of Ultrasound Based Techniques for Measuring Skeletal Muscle Motion Development of Ultrasound Based Techniques for Measuring Skeletal Muscle Motion Jason Silver August 26, 2009 Presentation Outline Introduction Thesis Objectives Mathematical Model and Principles Methods

More information

Chapter 1. Principles of medical ultrasound. Overview. Background history: first steps to the piezo-electric effect.

Chapter 1. Principles of medical ultrasound. Overview. Background history: first steps to the piezo-electric effect. Chapter 1 Principles of medical ultrasound GRAHAM ARTHURS, PATRICK HILL AND TREVOR FRANKEL Overview This chapter provides an introduction to the ultrasound process for trainees in anesthesia and other

More information

Basic of Ultrasound Physics E FAST & Renal Examination. Dr Muhammad Umer Ihsan MBBS,MD, DCH CCPU,DDU1,FACEM

Basic of Ultrasound Physics E FAST & Renal Examination. Dr Muhammad Umer Ihsan MBBS,MD, DCH CCPU,DDU1,FACEM Basic of Ultrasound Physics E FAST & Renal Examination Dr Muhammad Umer Ihsan MBBS,MD, DCH CCPU,DDU1,FACEM What is Sound? Sound is Mechanical pressure waves What is Ultrasound? Ultrasounds are sound waves

More information

Descriptions of NDT Projects Fall 2004 October 31, 2004

Descriptions of NDT Projects Fall 2004 October 31, 2004 Descriptions of NDT Projects Fall 2004 October 31, 2004 Introduction There are two separate NDT labs in Magister: ULTRA for ultrasound and EDDY for eddy current. Both labs are equipped with mechanical

More information

Ultrasonic Testing. Basic Principles

Ultrasonic Testing. Basic Principles Ultrasonic Testing Ultrasonic Testing (UT) uses high frequency sound waves (typically in the range between 0.5 and 15 MHz) to conduct examinations and make measurements. Besides its wide use in engineering

More information

An Overview of Ultrasound Testing For Lesion Detection in Human Kidney

An Overview of Ultrasound Testing For Lesion Detection in Human Kidney Journal of Tomography System & Sensors Application Vol.1, Issue 1, June 2018 An Overview of Ultrasound Testing For Lesion Detection in Human Kidney Aina Fadhilah Abd Rahim 1, Zawin Najah Abd Halim 1, Jaysuman

More information

Introduction to Ultrasound Guided Region Anesthesia

Introduction to Ultrasound Guided Region Anesthesia Introduction to Ultrasound Guided Region Anesthesia Brian D. Sites, MD Dept of Anesthesiology Dartmouth-Hitchcock Medical Center INTRODUCTION Welcome to Introduction to Ultrasound Guided Regional Anesthesia.

More information

Ultrasound in Anesthesia: Applying Scientific Principles to Clinical Practice

Ultrasound in Anesthesia: Applying Scientific Principles to Clinical Practice AANA Journal Course Update for Nurse Anesthetists 3 6 CE Credits* Ultrasound in Anesthesia: Applying Scientific Principles to Clinical Practice Christian R. Falyar, CRNA, DNAP The use of ultrasound as

More information

CONTENTS. Test Number cpd Tanya Reynolds (Nat. Dip. Diag. Rad., B. Tech. Diag. Rad., B. Tech. Ultrasound)

CONTENTS. Test Number cpd Tanya Reynolds (Nat. Dip. Diag. Rad., B. Tech. Diag. Rad., B. Tech. Ultrasound) CONTENTS page 1-15 page 16 BASIC 2-DIMENSIONAL ULTRASOUND PRINCIPLES Multiple Choice Test Test Number cpd 41640 Tanya Reynolds (Nat. Dip. Diag. Rad., B. Tech. Diag. Rad., B. Tech. Ultrasound) Tanya is

More information

A-level APPLIED SCIENCE

A-level APPLIED SCIENCE Please write clearly in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature A-level APPLIED SCIENCE Unit 8 Medical Physics Tuesday 24 May 2016 Morning Time allowed: 1

More information

4.17. RESEARCHING MODELS WITH AN ULTRASONIC ECHOSCOPE

4.17. RESEARCHING MODELS WITH AN ULTRASONIC ECHOSCOPE 4.17. RESEARCHING MODELS WITH AN ULTRASONIC ECHOSCOPE Purpose of experiment Determine the main characteristics of ultrasound waves, and the distances and positions of models using an ultrasonic echoscope.

More information

1. Fig. 1 shows data for the intensity of a parallel beam of X-rays after penetration through varying thicknesses of a material

1. Fig. 1 shows data for the intensity of a parallel beam of X-rays after penetration through varying thicknesses of a material 1. Fig. 1 shows data for the intensity of a parallel beam of X-rays after penetration through varying thicknesses of a material. intensity / MW m 2 thickness / mm 0.91 0.40 0.69 0.80 0.52 1.20 0.40 1.60

More information

DIAGNOSTIC TECHNIQUE OF ABNORMALITIES IN BALL BEARINGS WITH AN ULTRASONIC METHOD

DIAGNOSTIC TECHNIQUE OF ABNORMALITIES IN BALL BEARINGS WITH AN ULTRASONIC METHOD 12 th A-PCNDT 2006 Asia-Pacific Conference on NDT, 5 th 10 th Nov 2006, Auckland, New Zealand DIAGNOSTIC TECHNIQUE OF ABNORMALITIES IN BALL BEARINGS WITH AN ULTRASONIC METHOD Akitoshi Takeuchi 1 1 Kochi

More information

What is Ultrasound? Resolution Image production Attenuation Imaging modes Ultrasound artifacts... 7

What is Ultrasound? Resolution Image production Attenuation Imaging modes Ultrasound artifacts... 7 What is Ultrasound?... 1 Resolution... 3 Image production... 3 Attenuation... 4 Imaging modes... 5 Ultrasound artifacts... 7 0 What is Ultrasound? High frequency sound of frequencies 2-50 MHz is used in

More information

CSB 046 Complementary Imaging Techniques

CSB 046 Complementary Imaging Techniques CSB 046 Complementary Imaging Techniques - Quizzes are only ultrasound, final includes nuc med and ultrasound Week 1 Intro to Ultrasound Physics - Uses 1 to 20 MHz frequencies, which is way above the sound

More information

Pulse-Echo Ultrasound Imaging. Resolution in Ultrasound Imaging. Doppler Ultrasound. Resolution vs Penetration. Medical Imaging (EL582/BE620/GA4426)

Pulse-Echo Ultrasound Imaging. Resolution in Ultrasound Imaging. Doppler Ultrasound. Resolution vs Penetration. Medical Imaging (EL582/BE620/GA4426) Medical Imaging (EL582/BE620/GA4426) Pulse-Echo Ultrasound Imaging Ultrasound Imaging Lecture 2 Daniel (Dan) Turnbull, Ph.D. Skirball Institute and Dept of Radiology NYU School of Medicine (daniel.turnbull@med.nyu.edu)

More information

4.17. RESEARCHING MODELS WITH AN ULTRASONIC ECHOSCOPE

4.17. RESEARCHING MODELS WITH AN ULTRASONIC ECHOSCOPE 4.17. RESEARCHING MODELS WITH AN ULTRASONIC ECHOSCOPE Purpose of experiment Determine the main characteristics of ultrasound waves, and the distances and positions of models using an ultrasonic echoscope.

More information

Diagnostic approach to heart disease

Diagnostic approach to heart disease Diagnostic approach to heart disease Initial work up History Physical exam Chest radiographs ECG Special studies Echocardiography Cardiac catheterization Echocardiography principles Technique of producing

More information

Stress Wave Focusing Transducers

Stress Wave Focusing Transducers UCRL-K-130697 PREPRINT Stress Wave Focusing Transducers Steven R. Visuri, Richard A. London, Luiz Da Silva This paper was prepared for submittal to Optical Society of America, Spring Topical Meetings Orlando,

More information

Linear Ultrasonic Wave Propagation in Biological Tissues

Linear Ultrasonic Wave Propagation in Biological Tissues Indian Journal of Biomechanics: Special Issue (NCBM 7-8 March 29) Linear Ultrasonic Wave Propagation in Biological Tissues Narendra D Londhe R. S. Anand 2, 2 Electrical Engineering Department, IIT Roorkee,

More information

Ultrasound Knobology

Ultrasound Knobology Ultrasound Knobology Raj Dasgupta MD, FACP, FCCP, FASSM Assistant Professor of Clinical Medicine Pulmonary / Critical Care / Sleep Medicine University of Southern California (USC) Objectives Physics of

More information

High resolution ultrasound scanner for skin imaging

High resolution ultrasound scanner for skin imaging High resolution ultrasound scanner for skin imaging Christine Turlat Sales Director Atys medical 17 Parc d Arbora 69510 SOUCIEU EN JARREST Atys company Principle of ultrasound imaging DERMCUP Normal image

More information

Development of Ultrasound Based Techniques for Measuring Skeletal Muscle Motion

Development of Ultrasound Based Techniques for Measuring Skeletal Muscle Motion Development of Ultrasound Based Techniques for Measuring Skeletal Muscle Motion By Jason I. Silver, B.A.Sc. A thesis submitted to The Faculty of Graduate Studies and Research in partial fulfilment of the

More information

Ultrasound guidance in regional anesthesia has

Ultrasound guidance in regional anesthesia has Ultrasound and Regional Anesthesia Artifacts and Pitfall Errors Associated With Ultrasound-Guided Regional Anesthesia. Part I: Understanding the Basic Principles of Ultrasound Physics and Machine Operations

More information

THERAPEUTIC ULTRASOUND. Mohammed TA, Omar Ph.D. PT King Saud university College of Applied Medical Science Rehabilitation Health Science

THERAPEUTIC ULTRASOUND. Mohammed TA, Omar Ph.D. PT King Saud university College of Applied Medical Science Rehabilitation Health Science THERAPEUTIC ULTRASOUND Mohammed TA, Omar Ph.D. PT King Saud university College of Applied Medical Science Rehabilitation Health Science DEEP HEATING ULTRASOUND Objectives: At the completion of this lecture

More information

CH -3- Functions of the skeleton

CH -3- Functions of the skeleton CH -3- Functions of the skeleton أ.م.د. رجاء سهيل جنم جامعة تكريت كلية 1. Supporting:- The body's muscles are attached to the bones through tendons and ligaments and the system of the bones plus muscle

More information

WELCOME! Introduction to Bedside Ultrasound

WELCOME! Introduction to Bedside Ultrasound WELCOME! Introduction to Bedside Ultrasound TEACHERS University of California-Irvine School of Medicine Nathan Molina nathan.d.molina@gmail.com Trevor Plescia taplescia90@gmail.com Jack Silva jpsilva42@gmail.com

More information

Physics. Norman McDicken Tom Anderson CHAPTER ULTRASOUND. Ultrasound Propagation

Physics. Norman McDicken Tom Anderson CHAPTER ULTRASOUND. Ultrasound Propagation CHPTER 2 Physics Norman McDicken Tom nderson This chapter provides an introduction to the physics of medical ultrasound (US). Several books exist that can be consulted to extend the material presented

More information

Exam Practice Guide. Units 1 & 2 Physics: Detailed Study 5 - Investigations: Medical physics Examination Questions

Exam Practice Guide. Units 1 & 2 Physics: Detailed Study 5 - Investigations: Medical physics Examination Questions Exam Practice Guide Units 1 & 2 Physics: Detailed Study 5 - Investigations: Medical physics Examination Questions Key Features: 22 original examination style questions on all examinable topics. Full solutions

More information

Ultrasonic Testing of Composite Structures

Ultrasonic Testing of Composite Structures I. Introduction Ultrasonic Testing of Composite Structures This section of this work defines ultrasound basic concepts and Ultrasonic Technique. It describes the details of how ultrasonic testing works,

More information

Ultrasound: Past and Present. Lecturer: Dr. John M Hudson, PhD

Ultrasound: Past and Present. Lecturer: Dr. John M Hudson, PhD Ultrasound: Past and Present Lecturer: Dr. John M Hudson, PhD Disclosures 2 No conflicts of interest to declare Course Outline 3 1. Survey of ultrasound physics & applications 2. (Sep 21) 3. (Sep 28) 4.

More information

OPTION I TEST REVIEW

OPTION I TEST REVIEW IB PHYSICS 3 Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS OPTION I TEST REVIEW s2. This question is about defects of hearing. The graph below shows an audiogram for a person who has not been

More information

HSC Physics. Module 9.6. Medical Physics

HSC Physics. Module 9.6. Medical Physics HSC Physics Module 9.6 Medical Physics Contextual Outline 9.6 Medical Physics (28 indicative hours) The use of other advances in technology, developed from our understanding of the electromagnetic spectrum,

More information

Introduction & Physics of ED Ultrasound. Objectives. What? - Limited Studies. Who? - ED Docs

Introduction & Physics of ED Ultrasound. Objectives. What? - Limited Studies. Who? - ED Docs Introduction & Physics of ED Ultrasound Martine Sargent, MD Ultrasound Director, Assistant Professor UCSF Department of Emergency Medicine San Francisco General Hospital & Trauma Center Objectives Who?

More information

Chapter 17 Sound Sound and Hearing. Properties of Sound Waves 1/20/2017. Pearson Prentice Hall Physical Science: Concepts in Action

Chapter 17 Sound Sound and Hearing. Properties of Sound Waves 1/20/2017. Pearson Prentice Hall Physical Science: Concepts in Action Pearson Prentice Hall Physical Science: Concepts in Action Chapter 17 Sound Standing Waves in Music When the string of a violin is played with a bow, it vibrates and creates standing waves. Some instruments,

More information

Ultrasound 10/1/2014. Basic Echocardiography for the Internist. Mechanical (sector) transducer Piezoelectric crystal moved through a sector sweep

Ultrasound 10/1/2014. Basic Echocardiography for the Internist. Mechanical (sector) transducer Piezoelectric crystal moved through a sector sweep Ultrasound Basic Echocardiography for the Internist Carol Gruver, MD, FACC UT Erlanger Cardiology Mechanical wave of compression and rarefaction Requires a medium for transmission Ultrasound frequency

More information

What is Ultrasound? What is Ultrasound? B A. Basic Principles of Ultrasound. Basic Principles of Ultrasound. Basic Principles of Ultrasound

What is Ultrasound? What is Ultrasound? B A. Basic Principles of Ultrasound. Basic Principles of Ultrasound. Basic Principles of Ultrasound Introduction to Ultrasound Principles Mani Montazemi, RDMS Baylor College of Medicine Division of Maternal-Fetal Medicine Department of Obstetrics and Gynecology Manager, Maternal Fetal Center Imaging

More information

VISUALIZATION OF TRANSDUCER-PRODUCED SOUND FIELDS IN SOLIDS

VISUALIZATION OF TRANSDUCER-PRODUCED SOUND FIELDS IN SOLIDS VISUALIZATION OF TRANSDUCER-PRODUCED SOUND FIELDS IN SOLIDS Wolfgang Sachse* Department of Theoretical and Applied Mechanics Cornell University, Ithaca, New York - 14853 ABSTRACT Broadband ultrasonic pulses

More information

Medical Imaging. Ultrasound Imaging

Medical Imaging. Ultrasound Imaging Medical Imaging Ultrasound Imaging Prof. Ed X. Wu Overview History Physics of Ultrasound wave propagation, attenuation, scattering, and reflection Generation and Detection of Ultrasound Piezoelectric Transducers

More information

Employer s Unit of Competence Ultrasonic testing of materials, products and plant

Employer s Unit of Competence Ultrasonic testing of materials, products and plant Employer s Unit of Competence Ultrasonic testing of materials, products and plant Document: AA064 Issue 2 May 2016 Image - if cover page required Supported by lead employer Overview This standard identifies

More information

(sound with frequency) above hertz / 20 khz. frequencies above (human) audible range. (sound) cannot be heard by humans 2

(sound with frequency) above hertz / 20 khz. frequencies above (human) audible range. (sound) cannot be heard by humans 2 M. (a) any two from: (sound with frequency) above 20 000 hertz / 20 khz frequencies above (human) audible range (sound) cannot be heard by humans 2 either two appropriate points gain mark each either both

More information

Breast Imaging Essentials

Breast Imaging Essentials Breast Imaging Essentials Module 9 Transcript 2016 ASRT. All rights reserved. Breast Imaging Essentials Module 9 Breast Ultrasound 1. ASRT Animation 2. Welcome Welcome to Module 9 of Breast Imaging Essentials

More information

1. SCOPE ELIGIBILITY EXAMINATION CONTENT RENEWAL & RECERTIFICATION PROCEDURE ESSENTIAL READING...

1. SCOPE ELIGIBILITY EXAMINATION CONTENT RENEWAL & RECERTIFICATION PROCEDURE ESSENTIAL READING... Certification Services Division Newton Building, St George s Avenue Northampton, NN2 6JB United Kingdom Tel: +44(0)1604-893-811. Fax: +44(0)1604-893-868. E-mail: pcn@bindt.org PCN/GEN ISO 20807 Appendix

More information

THERAPEUTIC ULTRASOUND. Mohammed TA, Omar Ph.D. PT King Saud university College of Applied Medical Science Rehabilitation Health Science

THERAPEUTIC ULTRASOUND. Mohammed TA, Omar Ph.D. PT King Saud university College of Applied Medical Science Rehabilitation Health Science THERAPEUTIC ULTRASOUND Mohammed TA, Omar Ph.D. PT King Saud university College of Applied Medical Science Rehabilitation Health Science DEEP HEATING ULTRASOUND Objectives: At the completion of this lecture

More information

Abdominal Ultrasound

Abdominal Ultrasound Abdominal Ultrasound What is Ultrasound Imaging of the Abdomen? What are some common uses of the procedure? How should I prepare? What does the equipment look like? How does the procedure work? How is

More information

High ultrasonic power standard by calorimetric method in NMIJ. Takeyoshi Uchida Masahiro Yoshioka

High ultrasonic power standard by calorimetric method in NMIJ. Takeyoshi Uchida Masahiro Yoshioka High ultrasonic power standard by calorimetric method in NMIJ Takeyoshi Uchida Masahiro Yoshioka 1 Typical method for measuring ultrasonic power Radiation force balance (RFB) method A method measuring

More information

Lesson 07: Ultrasound Transducers. This lesson contains 73 slides plus 16 multiple-choice questions.

Lesson 07: Ultrasound Transducers. This lesson contains 73 slides plus 16 multiple-choice questions. Lesson 07: Ultrasound Transducers This lesson contains 73 slides plus 16 multiple-choice questions. This lesson was derived from pages 33 through 42 in the textbook: Ultrasound Transducers Ultrasound Transducers

More information

Feng Xiujuan National Institute of Metrology (NIM),China

Feng Xiujuan National Institute of Metrology (NIM),China The acoustic calibration service in transportation at NIM Feng Xiujuan National Institute of Metrology (NIM),China 1. Calibration requirements 2. Calibration service at NIM 2.1 Microphone 2.2 Ultrasonic

More information

Can you believe that the ultrasonic waves are used for cleaning purpose???

Can you believe that the ultrasonic waves are used for cleaning purpose??? Introduction (Ultrasonic Cleaning Unit) Can you believe that the ultrasonic waves are used for cleaning purpose??? Learning Objectives On completion of this chapter you will be able to: 1. Describe the

More information

Ultrasonography of the Neck as an Adjunct to FNA. Nicole Massoll M.D.

Ultrasonography of the Neck as an Adjunct to FNA. Nicole Massoll M.D. Ultrasonography of the Neck as an Adjunct to FNA Nicole Massoll M.D. Basic Features of Head and Neck Ultrasound and Anatomy Nicole Massoll M.D. University of Arkansas for Medical Sciences, Little Rock

More information

Ultrasonic Testing (UT) Technique

Ultrasonic Testing (UT) Technique Research Group Ultrasonic Testing (UT) Technique Professor Pedro Vilaça * * Contacts: Address: Puumiehenkuja 3 (room 202), 02150 Espoo, Finland pedro.vilaca@aalto.fi October 2017 Contents Historical scope

More information

Ultrasonic Phased Array Testing of Complex Aircraft Structures

Ultrasonic Phased Array Testing of Complex Aircraft Structures ECNDT 2006 - Tu.1.1.2 Ultrasonic Phased Array Testing of Complex Aircraft Structures Ernst RAU, Ernst GRAUVOGL, Holger MANZKE, EADS Mil., Manching, Germany Philippe CYR, Olympus NDT, Québec, Canada 1.

More information

17.4 Sound and Hearing

17.4 Sound and Hearing You can identify sounds without seeing them because sound waves carry information to your ears. People who work in places where sound is very loud need to protect their hearing. Properties of Sound Waves

More information

Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function.

Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function. Hearing Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function. 19/11/2014 Sound A type of longitudinal mass wave that

More information

Non-Destructive Inspection of Composite Wrapped Thick-Wall Cylinders

Non-Destructive Inspection of Composite Wrapped Thick-Wall Cylinders Non-Destructive Inspection of Composite Wrapped Thick-Wall Cylinders Jikai Du, John Feldhacker, Christopher Jerred and Fereidoon Delfanian May 17-19, 2010 Joint Armaments Conference, Exhibition and Firing

More information

Strain Assessment in Echo

Strain Assessment in Echo Strain Assessment in Echo Joe M. Moody, Jr, MD UTHSCSA and STVHCS 2010 Acknowledging many illustrations from Weyman s text and others. Echo-Doppler Basic Principles Background: Ultrasound physics (resolution,

More information

ON CELLS AND SOUND. Kingston upon Hull HU6 7RX, United Kingdom. University of Orléans, rue Charles Sadron, Orléans Cedex 2, France

ON CELLS AND SOUND. Kingston upon Hull HU6 7RX, United Kingdom. University of Orléans, rue Charles Sadron, Orléans Cedex 2, France Spiros Kotopoulis, Anthony Delalande, Chantal Pichon and Michiel Postema. On Cells and Sound Proceedings of the 34 th Scandinavian Symposium on Physical Acoustics, Geilo 30 January 2 February, 2011. ON

More information

FORMING SCREEN EFFECT ON ULTRASONIC BEAM FIELD

FORMING SCREEN EFFECT ON ULTRASONIC BEAM FIELD FORMING SCREEN EFFECT ON ULTRASONIC BEAM FIELD A Thesis Presented to The Academic Faculty by John Lyle Fouts In Partial Fulfillment of the Requirements for the Degree Master of Science in the School of

More information

Flip Chips and Acoustic Micro Imaging: An Overview of Past Applications, Present Status, And Roadmap for the Future

Flip Chips and Acoustic Micro Imaging: An Overview of Past Applications, Present Status, And Roadmap for the Future Flip Chips and Acoustic Micro Imaging: An Overview of Past Applications, Present Status, And Roadmap for the Future Janet E. Semmens Sonoscan, Inc. 2149 E. Pratt Boulevard Elk Grove Village, IL 60007 USA

More information

THE DEVELOPMENT AND MANUFACTURE OF FIXED- ULTRASONIC INSPECTION REFERENCE REFLECTORS AND TRANSDUCERS FOR COMPRESSOR BLADE DOVETAILS

THE DEVELOPMENT AND MANUFACTURE OF FIXED- ULTRASONIC INSPECTION REFERENCE REFLECTORS AND TRANSDUCERS FOR COMPRESSOR BLADE DOVETAILS International Workshop SMART MATERIALS, STRUCTURES & NDT in AEROSPACE Conference NDT in Canada 2011 2-4 November 2011, Montreal, Quebec, Canada THE DEVELOPMENT AND MANUFACTURE OF FIXED- ULTRASONIC INSPECTION

More information

Developments in Ultrasonic Inspection II

Developments in Ultrasonic Inspection II Developments in Ultrasonic Inspection II An Ultrasonic Technique for the Testing of Plates Embedded in Concrete with Synthesis of Signals from a Multi-element Probe H. Ishida, Y. Kurozumi, Institute of

More information

Chapter 14. Imaging Artifacts

Chapter 14. Imaging Artifacts Chapter 14 Image Artifacts The complex physical interactions that occur between an ultrasound beam and human anatomy and the intricate and sophisticated technological components of a sonographic imaging

More information

Chapter 2 Pitfalls in Musculoskeletal Ultrasound

Chapter 2 Pitfalls in Musculoskeletal Ultrasound Chapter 2 Pitfalls in Musculoskeletal Ultrasound Violeta Maria Vlad MD, PhD Introduction Taking a good ultrasound (US) picture is an art. Interpreting it is a science. This is in fact everything US is

More information

Ultrasonic Transducer. Piezoelectric ceramics / Piezoelectric polymer film / Piezoelectric thin film

Ultrasonic Transducer. Piezoelectric ceramics / Piezoelectric polymer film / Piezoelectric thin film Ultrasonic Piezoelectric ceramics / Piezoelectric polymer film / Piezoelectric thin film Ultrasonic Technology is gentle both to the Earth and humankind Diminution of negative influences to the environment,

More information

Performance of phased array and conventional ultrasonic probes on the new ISO reference block

Performance of phased array and conventional ultrasonic probes on the new ISO reference block Performance of phased array and conventional ultrasonic probes on the new ISO 19675 reference block C. Udell, D. Chai 1 and F. Gattiker Proceq S.A., Ringstrasse 2, Schwerzenbach, Switzerland. More info

More information

Flaw Assessment Using Shear wave Phased array Ultrasonic Transducer

Flaw Assessment Using Shear wave Phased array Ultrasonic Transducer 18th World Conference on Nondestructive Testing, 16-20 April 2012, Durban, South Africa Flaw Assessment Using Shear wave Phased array Ultrasonic Transducer Byungsik YOON AUTHOR 1, Hee-Jong LEE CO-AUTHOR

More information

Table of contents. Foreword. Preface. 1 Introduction Historical Perspective 00

Table of contents. Foreword. Preface. 1 Introduction Historical Perspective 00 Table of contents Foreword Preface 1 Introduction 00 1.1 Historical Perspective 00 2 Fundamentals of musculoskeletal ultrasound 00 2.1 Frequency and wavelength 00 2.2 Generating ultrasound waves 00 2.3

More information

The 2 nd Cambridge Advanced Emergency Ultrasound Course

The 2 nd Cambridge Advanced Emergency Ultrasound Course The 2 nd Cambridge Advanced Emergency Ultrasound Course Addenbrooke s Hospital Cambridge Sept 2008 1 2 Faculty! UK! USA! Australia! Toshiba! Emergency Medicine! Radiology 3 Programme! Day 1 Introduction

More information

Medical Imaging. By: Engr. Joseph Ronald Canedo

Medical Imaging. By: Engr. Joseph Ronald Canedo Medical Imaging By: Engr. Joseph Ronald Canedo Medical Sonography (Ultrasound) is an ultrasound-based diagnostic imaging technique used to visualize muscles and internal organs, their size, structures

More information

Precise defect detection with sensor data fusion

Precise defect detection with sensor data fusion Precise defect detection with sensor data fusion Composite Europe 2016 Dipl.-Ing. Philipp Nienheysen Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University, Germany Chair

More information

Heat Drain Device for Ultrasound Imaging Probes ESAOTE SPA

Heat Drain Device for Ultrasound Imaging Probes ESAOTE SPA Heat Drain Device for Ultrasound Imaging Probes ESAOTE SPA L. Spicci, G. Vigna TRANSDUCER STRUCTURE OVERVIEW Finished probe Complete transducer Silicon lens Filling resin INTRODUCTION Electrical driving

More information

The Evolution and Benefits of Phased Array Technology for the Every Day Inspector

The Evolution and Benefits of Phased Array Technology for the Every Day Inspector ECNDT 2006 - Poster 198 The Evolution and Benefits of Phased Array Technology for the Every Day Inspector Dan KASS, Tom NELLIGAN, and Erich HENJES Olympus NDT, Waltham, USA Abstract. Phased arrays were

More information